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The heat and mass transfer characteristics of natural convection about a horizontal surface embedded in a
saturated porous medium is analyzed. An integral procedure is derived to the heated horizontal surface,
where surface temperature and surface concentration are power function of distance from the leading
edge of porous plate. Local Nusselt number and local Sherwood number variations in the boundary layer
are presented graphically and in the tables for the various values of problem parameters and it is found
that the temperature and concentration fields near the plate increases with power law exponent n.
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1. Introduction

Transport processes through porous media play important roles
in diverse applications, such as in geothermal applications, petro-
leum industries, thermal insulation, design of solid-matrix heat
exchangers, chemical catalytic reactors and many others. The
study of convective heat and mass transfer and fluid flow in porous
media has received great attention in recent years. The state of art
concerning combined heat and mass transfer in porous media has
been summarized in the excellent monographs by Nield and Bejan
[1] and Ingham and Pop [2,3].

From a fundamental perspective, Nield [4] made the first at-
tempt to study the stability of convective flow in horizontal layers
with imposed vertical temperature and concentration gradients.
This was followed by Khan and Zebib [5] in the study of flow sta-
bility in a vertical porous layer. Bejan and his co-workers [6–8]
conducted a series of investigation of these effects in natural con-
vection in a fluid-saturated porous medium. Other geometries con-
sidered in the previous studies include line sources [9], vertical
surfaces [10–13], horizontal surfaces [14–17], vertical cylinders
[18] and the slender bodies of revolution [19]. More recently,
Sakamoto and Kulacki [20] reported experimental study of mea-
surements of heat transfer coefficients in steady natural convection
in a saturated porous medium. Experimental results show that
heat transfer coefficient can be adequately determined via a
Darcy-based model, the result confirm a correlation proposed by
Bejan [21]. The Darcy model works well in a porous medium has
a lower effective Prandtl number near the wall than in the bulk
medium. The factors that contribute to this effect include the thin-
ning of the boundary layer near the wall and an increase of effec-
tive thermal conductivity.
ll rights reserved.

).
Relative to the research activity on double-diffusive natural
convection flow from vertical surface with a porous medium, the
work reported on horizontal natural convection driven by com-
bined buoyancy is limited, probably owing to the mathematical
complexities involved in the problem. So, this work presents the
analytic solution to the coupled non-linear equations of heat and
mass transfer by natural convection from the horizontal surface
in a porous medium. This problem has important applications to
convective flow above heated bedrock or below the cooled cap-
rock in a liquid-dominated geothermal reservoir. An integral pro-
cedure is derived to solve the problem along the lines of Nakayama
and Hossain [22]. The comparison of the present integral solutions
with numerical solutions of pure thermal buoyancy-driven flow
[23,24], reveals excellent performance of the approximate method.

2. Mathematical analysis

Consider the natural convection in a porous medium saturated
with a Newtonian fluid on a horizontal plate (see Fig. 1). The x-
coordinate is measured along the surface and the y-coordinate
normal to it. It is assumed that the wall temperature and concen-
tration are power function of distance along the plate from its lead-
ing edge, i.e. Tw ¼ T1 þ axn and Cw ¼ C1 þ bxn, where a, b and n are
positive constants.

Several assumptions are used throughout the present paper: (a)
the flow is steady and incompressible; (b) the physical properties
are considered to be constant, except for the density term that is
associated with a body force; (c) flow is sufficiently slow that the
convecting fluid and the porous matrix are in local thermodynamic
equilibrium; (d) the processes occur at low concentration differ-
ence such that the diffusion-thermo and thermo-diffusion effects
and the interfacial velocity due to mass diffusion can be neglected;
and (f) the Boussinesq approximation is valid and the boundary
layer approximation is applicable.
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Nomenclature

a constant defined by Eq. (5)
b constant defined by Eq. (5)
Cp specific heat, J/(kg k)
D mass diffusivity of porous medium (m2/s)
g gravitational acceleration (m/s2)
h average heat transfer coefficient (W/m2 K)
K permeability (m2)
k thermal conductivity of the porous medium, (W/m K)
Le Lewis number
m average mass transfer coefficient (m/s)
Nu local Nusselt number
N buoyancy ratio
n constant defined by Eq. (5)
q local heat transfer coefficient
Ra modified Rayleigh number
Sh local Sherwood number
T non-dimensional temperature
u velocity component in the x-direction (m/s)
v velocity component in the y-direction (m/s)
x horizontal co-ordinate

y vertical co-ordinate

Greek symbols
a thermal diffusivity of porous medium (m2/s)
bl coefficient of thermal expansion (l/K)
bc coefficient of concentration expansion (m3/kg)
up porosity
g Independent similarity variable
h dimensionless temperature
m kinematics viscosity (m2/s)
l dynamic viscosity (kg/ms)
/ dimensionless concentration
q fluid density, (kg m3)
w dimensional stream function
n boundary layer ratio thickness

Subscripts
w condition at the wall
1 condition at the infinity

y,v

g 

δT

δC

o x,u

Fig. 1. Physical model and co-ordinate system.
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In-line with these assumptions, the governing equations
describing the conservation of mass, momentum, energy and con-
centration can be written as follows:
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In the above, (u,v) are the velocities in the (x,y) directions. bT and bC

are the thermal and concentration expansion coefficient respectively,
c is the kinematic viscosityof the fluid,l is the viscosityof the fluid, g is
the gravitational acceleration, K is the permeability of the porous
medium, a and D are the equivalent thermal and mass diffusivities
of the porous medium, T and C are the temperature and concentration.

The boundary conditions at the wall and at infinity are,
respectively

y ¼ 0; v ¼ 0; Tw ¼ T1 þ axn; Cw ¼ C1 þ bxn ð5Þ
y!1; u ¼ 0; T ! T1; C ! C1 ð6Þ
3. Integral solution

The energy equation (3) and concentration equation (4) can be
integrated together with the continuity equation and the boundary
conditions (5) and (6), to obtain
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The infinity is boundary layer thickness for temperature and con-
centration. With the help of boundary conditions, we assume expo-
nential profiles as follows:
T � T1
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In the above, dT is arbitrary scale for the thermal boundary layer thick-
ness whereas n is its ratio to the concentration boundary layer thick-
ness. With the help of above profiles and using Eq. (2) with boundary
conditions (5) and (6), we get the following velocity profiles:
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Substituting velocity, temperature and concentration profiles into
the above integral equations (7) and (8), to get the following ordin-
ary differential equations:
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Fig. 2. Heat transfer results with n for N = �0.5,0,1.
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The closed form solution of Eqs. (11) and (12) can be possible only
when dT may be written in the form as

dT ¼ d�
agKbT

ca

� ��1=3

xð2�nÞ=3 ð13Þ

where d* is constant. From the solution for dT, it is clear that if n > 2,
dT decreases as x increases. Thus, the value of n cannot be greater
than 2, otherwise boundary layer approximations will not be valid.
Putting the expression (13) for dT in Eqs. (11) and (12), we get
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In the above,

N ¼ bcðCw � C1Þ
bTðTw � T1Þ

ðBuoyancy ratioÞ

Le ¼ a
D
ðLewisn umberÞ

The parameter N measures the relative importance of mass and
thermal diffusion in the buoyancy-driven flow. It is clear that N is
zero for thermal-driven flow, infinite for mass-driven flow, positive
for aiding flow and negative for opposing flow.

Eqs. (14) and (15) can be combined to give the following alge-
braic equation of degree five for determining the boundary layer
thickness ratio n as:
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As n is determined using Newton–Raphson method from the Eq.
(16), d* can be obtained from Eqs. (14) and (15). Thus, the Nusselt
and Sherwood numbers of our primary interest can be calculated
easily as following.

The rate of heat and mass transfer from the wall to the medium
are computed from
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From the definition of local Nusselt number and local Sherwood
number, rate of heat and mass transfer are calculated by
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Here, the notations Nu and Sh are used for local Nusselt number and
local Sherwood number, respectively. From the above formulae (19)
and (20), it is clear that both Nu and Sh turn out to be equal in mag-
nitude, for n = 1, Le = 1 and N = 0 and hence thermal and concentra-
tion boundary layers of equal thicknesses.
Our next interest is compute the horizontal velocity u (x,y)
nearer to the wall, which can be defined by u(x,0) and is given by
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The velocity u(x,y) must be increasing or at least constant with re-
spect to x. This is possible if n is greater than or equal to 0.5. Thus,
non-dimensional velocity near the wall is defined as
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4. Results and discussion

In order to get the clear insight of the physical problem, the re-
sults for velocity, temperature and concentration near the horizon-
tal wall are presented in Figs. 2–6. Before proceeding for a detail
study, the results have been validated by comparing the results
in the form Nu for parameter setting Le = 1, N = 0 and 0 6 n 6 2,
with earlier heat transfer results of Cheng and Chang [23] and
Chang and Cheng [24], and it is found that they are in good agree-
ment and shown in Table 1. Calculations have been made for a
wide range of governing parameters and the results of the physical
quantities for the selected values of the power law exponent n are
presented in Table 2.

Figs. 2 and 3 give the variation of local Nusselt number and local
Sherwood number for Le = 2 with 0.5 6 n 6 2, in aiding and oppos-
ing regions. It is seen from these figures that both Nusselt and
Sherwood number increase with n. It is observed that for a positive
N, heat transfer increases and the increment depends strongly on
Le. For N > 0, as Le increases, the heat transfer is seen to decrease.
This is because of larger Le provides a thicker thermal boundary
layer. A negative N provides the opposite effect. When N is fixed,
the surface mass transfer consistently increases as Le increases.
This is because of the concentration boundary layer increasingly
thinner as Le increases. The case N = 0 indicates that the convection
is due to thermal buoyancy alone.

Figs. 4 and 5 illustrate the variations of local Nusselt number
and local Sherwood number versus the power law exponent n
when N is fixed, for the various values of Lewis number. It is shown
that both heat and mass transfer rates increase with increasing n.
For aiding flow, the heat transfer decreases while mass transfer



0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6

(Le = 2 fixed)

Sh

n

 N = -0.5
 N = 0.0
 N = 1.0
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Table 1
Values of local Nusselt number for Le = 1 and N = 0.

n Cheng and Chang [23] Chang and Cheng [24] Present study

0 0.420 0.429 0.421
1/2 0.8164 0.8164 0.8164
1 1.099 1.099 1.099
3/2 1.351 1.345 1.351
2 1.571 – 1.571
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increases significantly with increasing Le. Since with increasing Le,
the concentration boundary layer adjacent to the horizontal sur-
faces gets thickened which suggest the possible growth in Sh with
Le. For opposing flow, both heat and mass transfer rates increases
with Le.

Figs. 6 and 7 show the effect of buoyancy ratio and Lewis num-
ber on non-dimensional velocity. It is shown that the aiding flow
increases the velocity distribution while the opposing flow de-
creases these distributions. The velocity is found to increase with
increase n for both aiding and opposing flows. It is important to
note that for higher negative N, the velocity become negative and
the direction of the buoyancy induced flow may reverse, which
contradicts the boundary layer assumption and no solution is
meaningful. For Le > 1, the contribution to the horizontal velocity
by the mass buoyancy effect is less important and the flow reversal
occurs at a smaller value of N. For Le < 1, the situation will be re-
versed for larger value of N. In the viscous fluid flow, the velocity
at the wall must be zero to satisfy the no-slip condition, while in
porous media, with low porosity, it is possible to obtain finite ver-
tical velocity at the wall. This depends on the value of the wall
temperature and concentration. It is important to note that the
vertical velocity component should be positive for the problem un-
der consideration and it is clear that this velocity component will
become negative, which means the buoyant flow will be reversed.

5. Concluding remarks

Simultaneous heat and mass transfer by natural convection
from a horizontal surface embedded in a fluid-saturated Darcian



Table 2
Summary of integral solution.

n N Le f0(0) Nu Sh

0.5 �0.5 5 0.8134 0.7294 1.7005
10 0.8792 0.7542 2.2944

4 5 1.9435 1.2845 3.5240
10 1.6603 1.1919 4.8701

1 �0.5 5 0.7793 0.9261 1.7799
10 0.5694 0.9952 2.5360

4 5 2.0727 1.5589 4.3795
10 1.8161 1.4324 6.0200

1.5 �0.5 5 0.7416 1.0969 2.3917
10 0.5262 1.2173 2.8116

4 5 2.2435 1.7820 5.0940
10 1.9842 1.6235 6.9614

2 �0.5 5 0.7716 1.2542 2.7382
10 0.6591 1.3356 3.6137

4 5 2.4080 1.9772 5.7274
10 2.1468 1.7877 7.7815
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porous medium have been studied in this chapter. The original
problem was solved by Von-Karman integral method. The integral
solution is verified with published numerical results of heat trans-
fer. A final comment concerning the problem of Darcy horizontal
porous medium when the boundary condition at the wall
Tw = Cw = constant, Ref. [16] remarked that the solution presented
by [14,15] for boundary layer using finite difference method are
not physically plausible. The physically realistic solutions for natu-
ral convection depends on the variation of streamwise velocity,
boundary layer thickness, local heat flux, local mass flux, total en-
ergy and total species convected. So, the solution presented by
[14,15] is physically realistic. The task to investigate the problem
for non-Darcy case of constant heat and mass boundary conditions
at the wall is left for a future study.
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